如图,在边长为4的正方形 ABCD 中,点 E 为对角线 AC 上一动点(点 E 与点 A 、 C 不重合),连接 DE ,作 EF ⊥ DE 交射线 BA 于点 F ,过点 E 作 MN / / BC 分别交 CD 、 AB 于点 M 、 N ,作射线 DF 交射线 CA 于点 G .
(1)求证: EF = DE ;
(2)当 AF = 2 时,求 GE 的长.
(本题满分10分) 在我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 (2)把条形统计图补充完整;(3)已知该校有750人,估计全校喜欢乒乓球的人数是多少?
(本题满分10分) 如图,已知6×6的正方形网格中,每一个小正方形的边长为1,△ABC的顶点A、B、C都在小正方形的顶点上.
(本题满分10分)已知:如图,平行四边形ABCD中,AB⊥AC,对角线AC、BD交于O点,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1) 当旋转角为90°时,求证:四边形ABEF是平行四边形;(2) 求证:在旋转过程中,AF=EC.
(本题满分10分) 如图,在△ABC中,已知AB=AC=5,AD平分∠BAC,E是AC边的中点.(1)求DE的长;(2)若AD的长为4,求△DEC的面积.
求x的值:(1) ; (2) 8(x-1)3=27.