已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(-1,0),交y轴于点C.
(1)求抛物线的解析式和顶点坐标;
(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;
(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分ΔAMN的边MN时,求点N的坐标.
(本题8分)如图,在梯形ABCD中,AB∥DC,AB=14cm,CD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD向终点D运动(P、Q两点中,有一个点运动到终点时,所有运动即终止),设P、Q同时出发并运动了t秒。(1)当DQ=AP时,四边形APQD是平形四边形,求出此时t的值;(2) 试问在这样的运动过程中,是否存在某一时刻,使梯形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由。
(本题6分) 如图,四边形ABCD为矩形,对角线AC、BD相交于点O,CE平行于DB,交AB的延长线于E,试说明AC=CE
(本题6分)如图,在平行四边形ABCD中,点E是BC边上的一点,且AB=BE,AE的延长线交DC的延长线于点F,若∠F=56°求∠D的度数. 解:
第22题图
(本题6分)如图,在△ABC中,若AB=10,BD=6,AD=8,AC=17,求DC的长。
(本题10分)如图 ,直线与轴的交点坐标为A(0,1),与轴的交点坐标为B(-3,0);P、Q分别是轴和直线AB上的一动点,在运动过程中,始终保持QA=QP;△APQ沿直线PQ翻折得到△CPQ,A点的对称点是点C.(1)求直线AB的解析式.(2)是否存在点P,使得点C恰好落在直线AB上?若存在,请求出点P的坐标;若不存在,请说明理由.