如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。⑴求这个二次函数的表达式;⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.
如图,△ABC中,AB=AC,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点. ⑴求证:BG=CF ⑵请你判断AF、BG、AB之间的大小关系,并说明理由.
如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,求∠ADC的度数.
若无意义,且,求的值.
如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求点M、N,使PM+MN+NQ最短.
计算(4分+6分,共10分) (1)(2)