如图,在RtΔABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与ΔABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).
(1)当点Q在边AC上时,正方形DEFQ的边长为 x cm(用含x的代数式表示);
(2)当点P不与点B重合时,求点F落在边BC上时x的值;
(3)当0<x<2时,求y关于x的函数解析式;
(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.
计算:
如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F. (1)求证:△CEB≌△ADC; (2)若AD=9cm,DE=6 cm,求BE的长.
(10分) 如图①,一个无盖的正方体盒子的棱长为6厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计) (1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E,再连结AE、EC1.昆虫乙如果沿路径A→E→Cl 爬行 , 那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.(请简要说明画法) (2)如图②,假设昆虫甲从顶点C1以1厘米/秒的速度沿盒子的棱C1D1向D1爬行,同时昆虫乙从顶点A以2.5厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
(10分) 如图,Rt△ABC中,∠C = 90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上. (1)若∠BDA = 70°,求∠BAC的度数. (2)若BC = 8,AC = 6,求△ABD中AD边上的高.
(10分) 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍. (1)试销时该品种苹果的进货价是每千克多少元? (2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?