(宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=2.(1)直接写出B、C、D三点的坐标;(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
(本小题满分4分) 如图,在平面直角坐标系中,△ABC和△是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2).(1)若点A(,3),则A′的坐标为;(2)若△ABC的面积为m,则△A′B′C′的面积=.
(本小题满分5分) 如图,□ABCD中,点E在BA的延长线上,连接CE,与AD相交于点F.(1)求证:△EBC∽△CDF;(2)若BC=8,CD=3,AE=1,求AF的长.
(本小题满分5分) 如图,已知,求AB和BC的长.
如图,抛物线y =ax2+bx+c过点A(-1,0),且经过直线y =x-3与x轴的交点B及与y轴的交点C.(1)求点B、C的坐标;(2)求抛物线的解析式;(3)求抛物线的顶点M的坐标;(4)在直线y =x-3上是否存在点P,使△CMP是等腰三角形?若存在,求出满足条件的P点坐标;若不存在,说明理由.
【初始问题】如图1,已知两个同心圆,直线AD分别交大⊙O于点A、D,交小⊙O于点B、C.AB与CD相等吗?请证明你的结论. 【类比研究】如图2,若两个等边三角形ABC和A1 B1 C1的中心(点O)相同,且满足AB∥A1B1,BC∥B1C1,AC∥A1C1,可知AB与A1B1,BC与B1C1,AC与A1C1之间的距离相等.直线MQ分别交三角形的边于点M、N、P、Q,与AB所成夹角为∠α(30°<∠α<90°).(1)求(用含∠α的式子表示);(2)求∠α等于多少度时,MN = PQ.