首页 / 初中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 94

如图,将正 n 边形绕点 A 顺时针旋转 60 ° 后,发现旋转前后两图形有另一交点 O ,连接 AO ,我们称 AO 为"叠弦";再将"叠弦" AO 所在的直线绕点 A 逆时针旋转 60 ° 后,交旋转前的图形于点 P ,连接 PO ,我们称 OAB 为"叠弦角", ΔAOP 为"叠弦三角形".

[探究证明]

(1)请在图1和图2中选择其中一个证明:"叠弦三角形" ( ΔAOP ) 是等边三角形;

(2)如图2,求证: OAB = OAE '

[归纳猜想]

(3)图1、图2中的"叠弦角"的度数分别为       

(4)图 n 中,"叠弦三角形"   等边三角形(填"是"或"不是" )

(5)图 n 中,"叠弦角"的度数为   (用含 n 的式子表示)

登录免费查看答案和解析

如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形