已知四边形ABCD中,AB∥CD,∠A=∠D=90°,AD=CD=4,AB=7.现有M、N两点同时以相同的速度从A点出发,点M沿A—B—C-D方向前进,点N沿A—D—C-B方向前进,直到两点相遇时停止.设点M前进的路程为,△AMN的面积为.(1)试确定△AMN存在时,路程的取值范围.(2)请你求出面积S关于路程的函数.(3)当点M前进的路程为多少时,△AMN的面积最大?最大是多少?
如图,在△ABC中,,以顶点C为圆心,BC为半径作圆. 若. (1)求AB长; (2)求⊙C截AB所得弦BD的长.
已知函数与函数的图象大致如图.若试确定自变量的取值范围.
两个直角三角形按如图方式摆放,若AD=10,BE=6,∠ADE=370,∠BCE=270. 求CD长(精确到0.01). ()
已知,求代数式的值.
如图1,在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连接AB。 (1)求证:∠ABO1=∠ABO; (2)求AB的长; (3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM-BN的值不变;②BM+BN的值不变。其中有且只有一个结论正确,请判断①、②中哪个结论正确,并说明理由。