已知 n 边形的内角和 θ = ( n - 2 ) × 180 ° .
(1)甲同学说, θ 能取 360 ° ;而乙同学说, θ 也能取 630 ° .甲、乙的说法对吗?若对,求出边数 n .若不对,说明理由;
(2)若 n 边形变为 ( n + x ) 边形,发现内角和增加了 360 ° ,用列方程的方法确定 x .
一杯饮料,第一次倒去一半,第二次倒去剩下的一半……如此倒下去,第五次后剩下饮料是原来的几分之几?第次后呢?
某地电话拨号入网有两种收费方式,用户可以任选其一: (Ⅰ)计时制:0.05元/分; (Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分. (1)某用户某月上网的时间为小时,请你分别写出两种收费方式下该用户应该支付的费用; (2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?
某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下: -7,-10,+9,+2,-1,+5,-8,+10,+4,+9. (1)最高分和最低分各是多少? (2)求他们的平均成绩.
先化简,再求值:,其中,.
某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费. (1)问该中学库存多少套桌凳? (2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?