已知实数a、b、x、y满足ax+by=3,ay﹣bx=5,求(a2+b2)(x2+y2)的值.
如图,已知菱形 A B C D 的对角线相交于点 O ,延长 A B 至点 E ,使 B E = A B ,连接 C E . (1)求证: B D = E C ; (2)若 ∠ E = 50 ° ,求 ∠ B A O 的大小.
解不等式2(x﹣1)﹣3<1,并把它的解集在数轴上表示出来.
计算:(1)(2)(x+1)2﹣x(x+2)
已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(-1,yC)在该抛物线上.(Ⅰ)当a=1,b=4,c=10时,①求顶点P的坐标;②求-的值;(Ⅱ)当y0≥0恒成立时,求的最小值.
已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).