已知函数 f ( x ) = A sin ( 3 x + φ ) ( A > 0 , x ∈ ( - ∞ , + ∞ ) , 0 < φ < π ) 在x= x = π 12 时取得最大值4.. (1)求 f ( x ) 的最小正周期; (2)求 f ( x ) 的解析式; (3)若 f ( 2 3 α + π 12 ) = 12 5 .求 tan 2 α 的值.
(本小题满分12分)已知为坐标原点,向量,点满足. (1)记函数,求函数的最小正周期; (2)若、、三点共线,求的值.
(本小题满分12分)记函数的定义域为集合,函数的定义域为集合. (1)求; (2)若,且,求实数的取值范围.
(本小题满分14分) 如果对于函数的定义域内的任意成立,那么就称函数是定义域上的“平缓函数”. (1)判断函数,是否是 “平缓函数”? (2)若函数是闭区间上的“平缓函数”,且.证明:对任意的都有.
(本小题满分14分) 已知圆经过坐标原点, 且与直线相切,切点为. (1)求圆的方程; (2)若斜率为的直线与圆相交于不同的两点, 求的取值范围..
(本小题满分14分) 设数列的前n项和为,点均在函数y=3x-2的图像上。 (Ⅰ)求数列的通项公式; (Ⅱ)设,是数列的前n项和,求使得对所有都成立的最大正整数.