椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为,.(1)求椭圆的离心率;(2)设直线与轴交于点,且满足,当的面积最大时,求椭圆的方程.
选修4-5:不等式选讲已知函数(1)解不等式;(2)若函数的图象恒在函数的图象的上方,求实数的取值范围.
选修4-4:极坐标与参数方程 在极坐标系中,直线的极坐标方程为,是上任意一点,点在射线上,且满足,记点 的轨迹为. (1)求曲线的极坐标方程; (2)求曲线上的点到直线的距离的最大值.
已知函数.(1)当,存在(为自然对数的底数),使,求实数的取值范围;(2)当时,设,在的图象上是否存在不同的两点,使得?请说明理由.
已知抛物线与圆的两个交点之间的距离为4.(1)求的值;(2)设过抛物线的焦点且斜率为的直线与抛物线交于两点,与圆交于两点,当时,求的取值范围.
如图,是圆的直径,是圆上异于的一个动点,垂直于圆所在的平面,.(1)求证:;(2)若,求平面与平面所成的锐二面角的余弦值.