已知函数,.(1)求函数的最小值和最小正周期;(2)设的内角、、的对边分别为,,,且,,若,求,的值.
如图,正方形与等腰直角△ACB所在的平面互相垂直,且AC=BC=2,, F、G分别是线段AE、BC的中点.求与所成的角的大小.
椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)()的准线与x轴相交于点A,|OF|=2|FA|,过点A的直线与椭圆相交于P、Q两点.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)若,求直线PQ的方程;(Ⅲ)设(),过点P且平行于准线的直线与椭圆相交于另一点M,证明:.
如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直. 点M在AC上移动,点N在BF上移动,若CM=BN=.(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.
用数学归纳法证明等式对所以n∈N*均成立.
已知命题:复数对应的点落在复平面的第二象限;命题:以为首项,公比为的等比数列的前项和极限为2.若命题“且”是假命题,“或”是真命题,求实数的取值范围.