设函数为奇函数,其图象在点处的切线与直线 平行,导函数的最小值为 (Ⅰ)求,,的值; (Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值
(本小题满分12分) 设集合,,当时,求
(本小题满分12分) 已知全集,其中, (1)求(2) 求
已知函数,且函数在和处都取得极值。 (1)求实数的值; (2)求函数的极值; (3)若对任意,恒成立,求实数的取值范围。
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;
在△ABC中,角A、B、C所对应的边为 (1)若求A的值; (2)若,求的值.