当P为何值时,对任意实数x,不等式-9<≤6恒 成立.将原不等式等价转化为一元二次不等式组.
设A(x1,y1),B(x2,y2)是椭圆C:=1(a>b>0)上两点,已知m=,n=,若m·n=0且椭圆的离心率e=,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)试问△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-,点P的轨迹为曲线C.(1)求曲线C的方程;(2)若点Q为曲线C上的一点,直线AQ,BQ与直线x=4分别交于M,N两点,直线BM与椭圆的交点为D.求证,A,D,N三点共线.
在平面直角坐标系xOy中,动点P到直线l:x=2的距离是到点F(1,0)的距离的倍.(1)求动点P的轨迹方程;(2)设直线FP与(1)中曲线交于点Q,与l交于点A,分别过点P和Q作l的垂线,垂足为M,N,问:是否存在点P使得△APM的面积是△AQN面积的9倍?若存在,求出点P的坐标;若不存在,说明理由.
已知椭圆C1:=1,椭圆C2以C1的短轴为长轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设直线l与椭圆C2相交于不同的两点A、B,已知A点的坐标为(-2,0),点Q(0,y0)在线段AB的垂直平分线上,且=4,求直线l的方程.
在数列{an}中,a1=1,{an}的前n项和Sn满足2Sn=an+1.(1)求数列{an}的通项公式;(2)若存在n∈N*,使得λ≤,求实数λ的最大值.