(本小题满分10分)选修4—1: 几何证明选讲如图,直线经过⊙O上一点,且,,⊙O交直线于.(1)求证:直线是⊙O的切线;(2)若⊙O的半径为3,求的长.
如图所示,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点,PA=AD=a. (1)求证:MN∥平面PAD; (2)求证:平面PMC⊥平面PCD
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当l经过圆心C时,求直线l的方程; (2)当弦AB被点P平分时,写出直线l的方程
已知两直线,当为何值时,与(1)相交;(2)平行;(3)重合?
(本小题满分16分)已知函数是奇函数. (Ⅰ)求实数的值; (Ⅱ)试判断函数在(,)上的单调性,并证明你的结论; (Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分16分) 已知函数f(x)=为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为 (Ⅰ)求f()的值; (Ⅱ)将函数y=f(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)的单调递减区间.