某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正值)?(2)该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.
(本小题满分10分)选修4—4:坐标系与参数方程 在极坐标系中曲线的极坐标方程为,点. 以极点O为原点,以极轴为x 轴正半轴建立直角坐标系.斜率为的直线l过点M,且与曲线C交于A,B两点. (Ⅰ)求出曲线C的直角坐标方程和直线l的参数方程; (Ⅱ)求点M到A,B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲 如图,在△ABC中,,以为直径的⊙O交于,过点作⊙O的切线交于, 交⊙O于点. (Ⅰ)证明:是的中点; (Ⅱ)证明:.
(本小题满分12分)设函数. (Ⅰ)讨论函数的单调性; (Ⅱ)如果对所有的≥0,都有≤,求的最小值; (Ⅲ)已知数列中,,且,若数列的前n项和为,求证:.
(本小题满分12分)已知椭圆的左、右焦点分别为、,过的直线l与椭圆C相交于A,B两点,且△的周长为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点作与直线l平行的直线m,且直线m与抛物线交于P、Q两点,若A、P在x轴 上方,直线PA与直线QB相交于x轴上一点M,求直线l的方程.
(本小题满分12分)如图,在多面体ABCDEF中,正方形与梯形所在平面互相 垂直,已知,,. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成的角的正弦值.