如图,在平行四边形ABCD中,AD=2AB=2,∠BAD=60º,M、N分别是对角线BD、AC上的点,AC、BD相交于点O,已知BM=BO,ON=OC.设向量=a,=b (1)试用a,b表示;w (2)求||.
已知,且的最小正周期为. (1)求的单调递减区间. (2)求在区间上的取值范围.
做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第1颗骰子出现的点数,y 表示第2颗骰子出现的点数,写出:(1)求事件“出现点数相等”的概率 (2)求事件“出现点数之和大于8”的概率。
某射手在一次射击训练中,射中10环,9环,8环、7环的概率分别是0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率; (2)不够7环的概率。
设两个非零向量不共线.(1)三点是否能构成三角形, 并说明理由.(2)试确定实数k, 使
已知数列为等差数列,且 (1)求数列的通项公式;(2)求数列的前n项和。