已知函数.(1)若恒成立,试确定实数的取值范围;(2)证明:.
(本小题满分12分) 如图,已知四棱锥,底面为菱形,平面,,分别是的中点. (Ⅰ)判定AE与PD是否垂直,并说明理由 (Ⅱ)若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
(本小题满分12分) 为支持2010年广洲亚运会,某班拟选派4人为志愿者参与亚运会,经过初选确定5男4女共9名同学成为候选人,每位候选人当选志愿者的机会均等。 (1)求女生1人,男生3人当选时的概率? (2)设至少有几名男同学当选的概率为,当时,n的最小值?
(本小题满分10分) 在中,、、分别为角A、B、C的对边,且,,(其中).(Ⅰ)若时,求的值; (Ⅱ)若时,求边长的最小值及判定此时的形状。
选修4—5:不等式选讲 已知函数 (1)解关于的不等式; (2)若函数的图象恒在函数图象的上方,求的取值范围。
选修4—4:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。 (1)求直线的参数方程和圆的极坐标方程; (2)试判定直线和圆的位置关系。