(本小题满分13分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)设,,是椭圆上关于轴对称的任意两个不同的点,连结交椭圆于另一点,证明直线与轴相交于定点;(Ⅲ)在(Ⅱ)的条件下,过点的直线与椭圆交于,两点,求的取值范围.
(本小题满分12分)高二级某次数学测试中,随机从该年级所有学生中抽取了100名同学的数学成绩(满分150分),经统计成绩在的有6人,在的有4人.在,各区间分布情况如右图所示的频率分布直方图,若直方图中,和对应小矩形高度相等,且对应小矩形高度又恰为对应小矩形高度的一半.(1)确定图中的值;(2)设得分在110分以上(含110分)为优秀,则这次测试的优秀率是多少?(3)某班共有学生50人,若以该次统计结果为依据,现随机从该班学生中抽出3人, 则至少抽到一名数学成绩优秀学生的概率是多少?
、(本小题满分12分)已知函数为偶函数,且其图象两相邻对称轴间的距离为 (1)求的解析式; (2)若把图象按向量平移,得到函数的图象,求的单调增区间.
(本小题满分12分)已知△ABC中,角A,B,C的对边分别为a,b,c,且b=c,sinA•cosC=3sinC•cosA.(Ⅰ)若△ABC的面积S=sinA,求c;(Ⅱ)求的值.
(本小题满分12分)设向量=(3,1),=(-1,2),向量垂直于向量,向量平行于,试求时,的坐标.
(本小题满分12分)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,的部分图像如下图所示:(Ⅰ)求函数f(x)的解析式;(Ⅱ)写出函数f(x)的递增区间.