如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
设函数,. (1)当时,求不等式的解集; (2)对任意,恒有,求实数的取值范围.
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为. (1)求曲线的普通方程与曲线的直角坐标方程; (2)曲线与曲线交于两点,与轴交于点,求的值.
如图,过点作圆的割线与切线为切点,连接,的平分线与,分别交于点. (1)求证:; (2)若求的大小.
已知函数. (1)求函数的图象在点处的切线方程; (2)当时,判断方程的零点个数,并证明.
已知圆与轴的左右交点分别为,直线经过,直线经过,为,的交点,且,的斜率乘积为. (1)求点的轨迹方程; (2)若点在圆上,,且,当最大时,求弦的长度.