(本小题满分13分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(Ⅰ)计算样本的平均成绩及方差;(Ⅱ)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为,求随机变量的分布列和均值.
(.如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.(1)证明:AE⊥PD;(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
(如图所示,在四棱锥P—ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.(1)求证:PB⊥DM;(2)求BD与平面ADMN所成的角.
(在正四面体P—ABC中,D,E,F分别是AB、BC、 CA的中点,求证:(1)BC∥平面PDF; (2)BC⊥平面PAE
(本题12分) 设函数.(1) 求函数的单调区间;(2) 若函数在区间(0,2)上单调递减,试求实数的取值范围;(3) 若函数的极小值大于0,试求实数的取值范围.
(本题12分)口袋里放了12个大小完全一样的小球,其中3个是红色的,4个是白色的,5个是蓝色的,现从袋中任意取出4个小球,求:(1) 取出的小球的颜色至少是两种的概率;(2) 取出的小球的颜色是三种的概率.