(本小题满分13分)在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.(Ⅰ)计算样本的平均成绩及方差;(Ⅱ)现从10个样本中随机抽出2名学生的成绩,设选出学生的分数为90分以上的人数为,求随机变量的分布列和均值.
已知与两平行直线都相切,且圆心在直线上,(Ⅰ)求的方程;(Ⅱ)斜率为2的直线与相交于两点,为坐标原点且满足,求直线的方程。
已知函数(Ⅰ)求函数的最小正周期;(Ⅱ),求函数的最大值及相应的自变量x的取值.
如图所示,椭圆C: 的离心率,左焦点为右焦点为,短轴两个端点为.与轴不垂直的直线与椭圆C交于不同的两点、,记直线、的斜率分别为、,且.(1)求椭圆 的方程;(2)求证直线 与轴相交于定点,并求出定点坐标. (3)当弦 的中点落在内(包括边界)时,求直线的斜率的取值。
已知函数(1)若,求函数在点(0,)处的切线方程;(2)是否存在实数,使得的极大值为3.若存在,求出值;若不存在,说明理由。
在锐角中,已知内角A、B、C所对的边分别为,向量,且向量.(1)求角的大小;(2)如果,求的面积的最大值.