计算:(1);(2).
(本小题满分12分)已知数列满足:,且().(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列的通项公式; (Ⅲ)求下表中前行所有数的和 ……………………………
(本小题满分12分)已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围.
(本小题共12分) 圆中,求面积最小的圆的半径长。
(本小题共12分)甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”。 (1)求一个“单位射击组”为“单位进步组”的概率; (2)记完成三个“单位射击组”后出现“单位进步组”的次数,求的分布列与数学期望。
(本小题共12分)已知,四棱锥P—ABCD的底面ABCD的边长为1的正方形,PD⊥底面ABCD,且PD=1。 (1)求证:BC//平面PAD; (2)若E、F分别为PB、AD的中点,求证:EF⊥平面PBC; (3)求二面角B—PA—C的余弦值。