(本小题满分14分)已知函数,其中为常数,且是函数的一个零点。(1)求函数的最小正周期;(2)当时,求函数的值域。
已知函数. (1)若在处取得极值,求的值; (2)求的单调区间; (3)若且,函数,若对于,总存在使得,求实数的取值范围.
已知椭圆:的长轴长为4,且过点. (1)求椭圆的方程; (2)设、、是椭圆上的三点,若,点为线段的中点,、两点的坐标分别为、,求证:.
若数列的前项和为,对任意正整数都有,记. (1)求,的值; (2)求数列的通项公式; (3)若求证:对任意.
如图,在四棱锥中,侧面底面,,为中点,底面是直角梯形,,,,. (1) 求证:平面; (2) 求证:平面平面; (3) 设为棱上一点,,试确定的值使得二面角为.
为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图: 规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品. (1)试用上述样本数据估计甲、乙两厂生产的优等品率; (2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望; (3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.