(本小题满分14分)已知函数(1)若,求的单调递减区间;(2)若,求的最小值;(3)若,且存在使得,求实数的取值范围。
.数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2;(Ⅲ) 正数数列中,.求数列中的最大项.
(本小题满分13分)已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由.
设的图像经过点如图所示, (Ⅰ)求的解析式;(Ⅱ)若对恒成立,求实数m的取值范围.
(本题满分12分,第Ⅰ小题4分,第Ⅱ小题5分,第Ⅲ小题3分)如图,是直角梯形,∠=90°,∥,=1,=2,又=1,∠=120°,⊥,直线与直线所成的角为60°.(Ⅰ)求证:平面⊥平面;(Ⅱ)求二面角的大小;(Ⅲ)求三棱锥的体积.
(本题满分12分)有人预测:在2010年的广州亚运会上,排球赛决赛将在中国队与日本队之间展开,据以往统计, 中国队在每局比赛中胜日本队的概率为,比赛采取五局三胜制,即谁先胜三局谁就获胜,并停止比赛.(Ⅰ)求中国队以3:1获胜的概率;(Ⅱ)设表示比赛的局数,求的期望值.