甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(1)打满3局比赛还未停止的概率;(2)比赛停止时已打局数的分别列与期望E.
己知函数(1)若是的极值点,求在上的最大值;(2)在(1)的条件下,是否存在实数b,使得函数的图象与函数的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
如图所示,和是边长为2的正三角形,且平面平面,平面,.(1)证明:;(2)求三棱锥的体积.
设函数(1)求函数的最小值;(2)若恒成立,求实数的取值范围.
已知数列满足,其中.(1)设,求证:数列是等差数列,并求出的通项公式;(2)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
已知向量,=,函数.(1)求函数f(x)的解析式及其单调递增区间;(2)当x∈时,求函数f(x)的值域.