某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(1)若某位顾客消费128元,求返券金额不低于30元的概率;(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量的分布列和数学期望.
在中,角所对的边为,且满足 (Ⅰ)求角的值; (Ⅱ)若且,求的取值范围.
已知函数 (1)当时,求函数的极值; (2)若函数在定义域内为增函数,求实数m的取值范围; (3)若,的三个顶点在函数的图象上,且,、、分别为的内角A、B、C所对的边。求证:
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数. (1)试确定a,b的值; (2)讨论函数f(x)的单调区间; (3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.
直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=. (1)证明:CB1⊥BA1; (2)已知AB=2,BC=,求三棱锥C1-ABA1的体积.
已知向量函数. (1)求函数的最小正周期及单调递减区间; (2)在锐角三角形ABC中,的对边分别是,且满足求的取值范围.