某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN ( P 为此圆弧的中点)和线段 MN 构成,已知圆 O 的半径为40米,点 P 到 MN 的距离为50米,先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD .大棚Ⅱ内的地块形状为 ΔCDP 要求 AB 均在线段 MN 上, C , D 均在圆弧上,设 OC 与 MN 所成的角为 θ
(1)用 θ 分别表示矩形 A B C D 和 Δ C D P 的面积,并确定 sin θ 的取值范围
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4 : 3 .求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.
已知某公司生产品牌服装的年固定成本为10万元,每生产千件,须另投入2.7万元,设该公司年内共生产品牌服装千件并全部销售完,每千件的销售收入为万元,且. (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获年利润最大?
(1)解不等式:; (2)已知集合,.若,求实数的取值组成的集合.
在△中,内角所对的边分别为,已知m,n,m·n. (1)求的大小; (2)若,,求△的面积.
已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列前项和为,且满足 (1)求数列的通项公式; (2)求数列前项和; (3)在数列中,是否存在连续的三项,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数的值;若不存在,说明理由.
设函数. (1)若,求的单调区间; (2)若当时,求的取值范围