(本小题满分14分)已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
已知函数(). (1)当时,求函数的单调区间; (2)当时,取得极值. ① 若,求函数在上的最小值; ② 求证:对任意,都有.
如图,过抛物线的对称轴上任一点作直线与抛物线交于、两点,点Q是点P关于原点的对称点. (1)设,证明:; (2)设直线AB的方程是,过、两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.
已知函数 (1)若求在处的切线方程; (2)若在区间上恰有两个零点,求的取值范围.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. ①; ②; ③; ④; ⑤. (1)从上述五个式子中选择一个,求出常数; (2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论.
如图,四棱锥的底面是正方形,棱底面,=1,是的中点. (1)证明平面平面; (2)求二面角的余弦值.