已知函数的图象为曲线E.(Ⅰ) 若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系;(Ⅱ) 说明函数可以在和时取得极值,并求此时a,b的值;(Ⅲ) 在满足(2)的条件下,在恒成立,求c的取值范围.
如图,过点作抛物线的切线,切点在第二象限.(1)求切点的纵坐标;(2)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线,,的斜率分别为,,,若,求椭圆方程.
已知数列满足:.(1)求证:数列是等比数列;(2)令(),如果对任意,都有,求实数的取值范围.
如图,菱形与矩形所在平面互相垂直,.(1)求证:平面;(2)若,当二面角为直二面角时,求的值;(3)在(2)的条件下,求直线与平面所成的角的正弦值.
某网站用“10分制”调查一社区人们的幸福度.现从调查人群中随机抽取16名,以下茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.(1)从这16人中随机选取3人,记表示抽到“极幸福”的人数,求的分布列及数学期望,并求出至多有1人是“极幸福”的概率;(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求的数学期望.
已知, (1)写出图像的对称中心的坐标和单调递增区间;(2)三个内角、、所对的边为、、,若,.求的最小值.