已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(Ⅱ)若集合是集合的一个元基底,证明:;(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.
在中,已知,,.(1)求的值;(2)求的值.
.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:m),修建围墙的总费用为y (单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
如图,在三棱锥中,分别为的中点.(1)求证:平面;(2)若平面平面,且,,求证:平面平面.
已知,(1)当时,解不等式;(2)若,解关于x的不等式.
(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.⑴求椭圆的方程;⑵设、、是椭圆上的三点(异于椭圆顶点),且存在锐角,使.①试求直线与的斜率的乘积;②试求的值.