记 f ' ( x ) , g ' ( x ) 分别为函数 f ( x ) , g ( x ) 的导函数.若存在 x 0 ∈ R ,满足 f ( x 0 ) = g ( x 0 ) 且 f ' ( x 0 ) = g ' ( x 0 ) ,则称 x 0 为函数 f ( x ) 与 g ( x ) 的一个“S点”.
(1)证明:函数 f ( x ) = x 与 g ( x ) = x 2 + 2 x - 2 不存在“S点”.
(2)若函数 f ( x ) = a x 2 - 1 与 g ( x ) = ln x 存在“S点”,求实数 a 的值.
(3)已知函数 f ( x ) = - x 2 + a , g ( x ) = b e x x ,对任意 a > 0 ,判断是否存在 b > 0 ,使函数 f ( x ) 与 g ( x ) 在区间 ( 0 , + ∞ ) 内存在“S”点,并说明理由.
已知数列的前项和为,. (1)求数列的通项公式; (2)设,=,记数列的前项和.若对,恒成立,求实数的取值范围.
设函数 (1)求的最大值,并写出使取最大值时x的集合; (2)已知中,角A、B、C的对边分别为a、b、c,若,求a的最小值.
已知函数. (Ⅰ)用分段函数的形式表示,并求的最大值; (Ⅱ)若,求实数的取值范围.
(本题满分12分)我国是水资源匮乏的国家,为鼓励节约用水,某市打算出台一项水费政策措施.规定:每季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分的水费按基本价3倍收取;若超过6吨而不超过7吨时,超过部分的水费按基本价5倍收取. 某人本季度实际用水量为吨,应交水费为元。 (Ⅰ)求的值; (Ⅱ)试求出函数的解析式.
已知函数 (Ⅰ)若在是减函数,在是增函数,求实数的值; (Ⅱ)求实数的取值范围,使在区间上是单调函数,并指出相应的单调性.