记 f ' ( x ) , g ' ( x ) 分别为函数 f ( x ) , g ( x ) 的导函数.若存在 x 0 ∈ R ,满足 f ( x 0 ) = g ( x 0 ) 且 f ' ( x 0 ) = g ' ( x 0 ) ,则称 x 0 为函数 f ( x ) 与 g ( x ) 的一个“S点”.
(1)证明:函数 f ( x ) = x 与 g ( x ) = x 2 + 2 x - 2 不存在“S点”.
(2)若函数 f ( x ) = a x 2 - 1 与 g ( x ) = ln x 存在“S点”,求实数 a 的值.
(3)已知函数 f ( x ) = - x 2 + a , g ( x ) = b e x x ,对任意 a > 0 ,判断是否存在 b > 0 ,使函数 f ( x ) 与 g ( x ) 在区间 ( 0 , + ∞ ) 内存在“S”点,并说明理由.
(本小题满分12分)已知空间向量 (1)求及的值; (2)设函数的最小正周期及取得最大值时x的值。
如图,四棱锥P—ABCD的底面是正方形,PA底面ABCD,PA=2,, 点E,F分别为棱AB,PD的中点。 (I)在现有图形中,找出与AF平行的平面,并给出证明; (II)判断平面PCE与平面PCD是否垂直?若垂直,给出证明;若不垂直,说明理由。
(选修4—1,几何证明选讲) 如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DEAB,垂足为E,且E是OB的中点,求BC的长。
已知函数和 (I)函数在区间(0,+)上是增函数还是减函数?说明理由; (II)求证:函数在区间(2,3)上有唯一零点; (III)当时,不等式恒成立,其中是导函数, 求正整数K的最大值。
在全球金融风暴背景下,某政府机构调查了某地工薪阶层10000人的月工资收入,并把调查结果画成如图所示的频率分布直方图,请将频率当做概率解答以下问题: (1)为了了解工薪阶层对月工资收入的满意程度,要用分层抽样方法从所调查的10000人中抽出100人做电话询访,则在(2000,3500](元)月工资收入段抽出多少人? (2)为刺激消费,政府计划给该地所有工薪阶层的人无偿发放购物消费劵,方法如下:月工资不多于2000元的每人可领取5000元的消费劵;月工资在(2000,3500](元)间的每人可领取2000元的消费劵;月工资多于3500元的每人可领取1000元的消费劵。用随机变量ξ表示该地某一工薪阶层的人可领取的消费劵金额,求ξ的分布列与期望(均值)。