记 f ' ( x ) , g ' ( x ) 分别为函数 f ( x ) , g ( x ) 的导函数.若存在 x 0 ∈ R ,满足 f ( x 0 ) = g ( x 0 ) 且 f ' ( x 0 ) = g ' ( x 0 ) ,则称 x 0 为函数 f ( x ) 与 g ( x ) 的一个“S点”.
(1)证明:函数 f ( x ) = x 与 g ( x ) = x 2 + 2 x - 2 不存在“S点”.
(2)若函数 f ( x ) = a x 2 - 1 与 g ( x ) = ln x 存在“S点”,求实数 a 的值.
(3)已知函数 f ( x ) = - x 2 + a , g ( x ) = b e x x ,对任意 a > 0 ,判断是否存在 b > 0 ,使函数 f ( x ) 与 g ( x ) 在区间 ( 0 , + ∞ ) 内存在“S”点,并说明理由.
(本小题满分12分)已知函数(为自然对数的底数).(1)求函数的单调区间;(2)设函数,存在使得成立,求实数的取值范围.
(本小题满分12分)已知椭圆+=1(>>)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点的直线:,与该椭圆交于、两点,直线、的斜率依次为、,满足,试问:当变化时,是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.(Ⅰ)求证:平面平面BCD;(Ⅱ)求二面角的平面角的大小.
某大学志愿者协会中,数学学院志愿者有8人,其中含5名男生,3名女生;外语学院志愿者有4人,其中含1名男生,3名女生.现采用分层抽样的方法(层内采用简单随机抽样)从两个学院中共抽取3名同学,到希望小学进行支教活动.(1)求从数学学院抽取的同学中至少有1名女同学的概率;(2)记为抽取的名同学中男同学的人数,求随机变量的分布列和数学期望.
在中,是中点,已知.(1)判断的形状;(2)若的三边长是连续三个正整数,求的余弦值.