如图,A(0,1),M(3,2),N(4,4) , 动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为 t 秒.(直线y = kx+b平移时k不变)(1)当t=3时,求 l 的解析式;(2)若点M,N位于l 的异侧,确定 t 的取值范围.
(年陕西省10分)已知抛物线C:y=﹣x2+bx+c经过A(﹣3,0)和B(0,3)两点,将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?
(年山西省13分)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和O′A′B′C′,在向下平移的过程中,设O′A′B′C′与OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
(年四川泸州12分)如图,已知一次函数的图象l与二次函数的图象都经过点B(0,1)和点C,且图象过点A(,0).(1)求二次函数的最大值;(2)设使成立的x取值的所有整数和为s,若s是关于x的方程的根,求a的值;(3)若点F、G在图象上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P 的坐标.
(2014年湖北咸宁10分)如图1,P(m,n)是抛物线上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H. 【探究】 (1)填空:当m=0时,OP= ,PH= ;当m=4时,OP= ,PH= ; 【证明】 (2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想. 【应用】 (3)如图2,已知线段AB=6,端点A,B在抛物线上滑动,求A,B两点到直线l的距离之和的最小值.
(年湖北鄂州12分)如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y=ax2+bx+c(a≠0)经过A、C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式.(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF的周长取得最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由.(3)将抛物线C1作适当平移,得到抛物线C2:,h>1.若当1<x≤m时,y2≥﹣x恒成立,求m的最大值.