(1)已知,求下列各式的值. ①; ②; (2)计算的值.
如图,是棱长为1的正方体,四棱锥中,平面,。(Ⅰ)求证: (Ⅱ)求直线与平面所成角的正切值。
设数列满足:。(1)求证:;(2)若,对任意的正整数恒成立,求的取值范围。
若向量,其中,记函数,若函数的图象与直线为常数)相切,并且切点的横坐标依次成公差为的等差数列。(1)求的表达式及的值;(2)将函数的图象向左平移,得到的图象,当时,的交点横坐标成等比数列,求钝角的值。
(本小题满分12分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点。(I)求椭圆的方程;(Ⅱ)求线段MN的长度的最小值;(Ⅲ)当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由
(本小题满分12分)己知函数(1)求的单调区间;(2)若时,恒成立,求的取值范围;(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。