已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存过点(2,1)的直线与椭圆相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由.
已知α,β∈(0,π),且tanα=2,cosβ=-.(1)求cos2α的值;(2)求2α-β的值.
已知函数f(x)=-sin(2x+)+6sinxcosx-2cos2x+1,x∈R.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最大值和最小值.
设函数 .(1) 当时,求函数的极值;(2)若,证明:在区间内存在唯一的零点;(3)在(2)的条件下,设是在区间内的零点,判断数列的增减性.
如图,已知椭圆的右焦点为,点是椭圆上任意一点,圆是以为直径的圆.(1)若圆过原点,求圆的方程; (2)写出一个定圆的方程,使得无论点在椭圆的什么位置,该定圆总与圆相切,请写出你的探究过程.
已知数列满足().(1)若数列是等差数列,求数列的前项和;(2)证明:数列不可能是等比数列.