结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是_______ ;表示-3和2两点之间的距离是_____;一般地,数轴上表示数m和数n的两点之间的距离等于|m-n|.如果表示数a和-2的两点之间的距离是3,那么a= ______(2)若数a表示数轴上的整数点,当a取何值时,|a+1|+|a-2|的值最小,最小为多少?
如图,在平面直角坐标系中,抛物线y=-x2+bx+c与y轴交于点A(0,3),且经过点(5,-2),点B与点A关于对称轴对称,过点B作BC⊥x轴,垂足为C,连结OB.(1)求二次函数的解析式,并求出点B的坐标.(2)把△AOB以每秒1个单位的速度向右平移,得到△PDE,PE交OB于点F,PD交BC于点M,设向右平移运动的时间为t(s).设平移过程中与△OBC重叠部分的面积为S,试探求S 与t的函数关系式,并求当t为何值时,S最大?(3)在(2)的条件下,是否存在某一时刻t,使△OCE为等腰三角形?若存在,求出t;若不存在,请说明理由.
如图,点C在以AB为直径的⊙O上,∠CBA=30°,点D在AB上由点A开始向点B运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.(1)如果CD⊥AB,求证:EF为⊙O的切线;(2)求证:CE=CF;(3)如果点F恰好落在弧BC上,请在备用图中画出图形,探究并证明此时EF与AB的关系.
如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=-(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.
一个不透明的袋子中装有大小、质地完全相同的3只球,球上分别标有2,3,5三个数字. (1)从这个袋子中任意摸一只球,所标数字是奇数的概率是 ; (2)从这个袋子中任意摸一只球,记下所标数字,不放回,再从从这个袋子中任意摸一只球,记下所标数字.将第一次记下的数字作为十位数字,第二次记下的数字作为个位数字,组成一个两位数.求所组成的两位数是5的倍数的概率.(请用“画树状图”或“列表”的方法写出过程)
某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元的资金 购进这两款汽车共15辆 ,问A款汽车最多能购进多少辆?