如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=72°,OF⊥CD,垂足为O,求∠EOF的度数。
如图,已知抛物线 y = a x 2 + 3 2 x + 4 的对称轴是直线 x = 3 ,且与 x 轴相交于 A , B 两点 ( B 点在 A 点右侧)与 y 轴交于 C 点.
(1)求抛物线的解析式和 A 、 B 两点的坐标;
(2)若点 P 是抛物线上 B 、 C 两点之间的一个动点(不与 B 、 C 重合),则是否存在一点 P ,使 ΔPBC 的面积最大.若存在,请求出 ΔPBC 的最大面积;若不存在,试说明理由;
(3)若 M 是抛物线上任意一点,过点 M 作 y 轴的平行线,交直线 BC 于点 N ,当 MN = 3 时,求 M 点的坐标.
如图,某测量小组为了测量山 BC 的高度,在地面 A 处测得山顶 B 的仰角 45 ° ,然后沿着坡度为 i = 1 : 3 的坡面 AD 走了200米达到 D 处,此时在 D 处测得山顶 B 的仰角为 60 ° ,求山高 BC (结果保留根号).
学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类: A :好, B :中, C :差.
请根据图中信息,解答下列问题:
(1)求全班学生总人数;
(2)将上面的条形统计图与扇形统计图补充完整;
(3)张老师在班上随机抽取了4名学生,其中 A 类1人, B 类2人, C 类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是 B 类学生的概率.
请阅读以下材料:已知向量 a ⃗ = ( x 1 , y 1 ) , b ⃗ = ( x 2 , y 2 ) 满足下列条件:
① | a ⃗ | = x 1 2 + y 1 2 , | b ⃗ | = x 2 2 + y 2 2
② a ⃗ ⊗ b ⃗ = | a ⃗ | × | b ⃗ | cos α (角 α 的取值范围是 0 ° < α < 90 ° ) ;
③ a ⃗ ⊗ b ⃗ = x 1 x 2 + y 1 y 2
利用上述所给条件解答问题:
如:已知 a ⃗ = ( 1 , 3 ) , b ⃗ = ( − 3 , 3 ) ,求角 α 的大小;
解: ∵ | a ⃗ | = x 1 2 + y 1 2 = 1 2 + ( 3 ) 2 = 2 ,
b ⃗ = x 2 2 + y 2 2 = ( − 3 ) 2 + 3 2 = 12 = 2 3
∴ a ⃗ ⊗ b ⃗ = | a ⃗ | × | b ⃗ | cos α = 2 × 2 3 cos α = 4 3 cos α
又 ∵ a ⃗ ⊗ b ⃗ = x 1 x 2 + y 1 y 2 = 1 × ( − 3 ) + 3 × 3 = 2 3
∴ 4 3 cos α = 2 3
∴ cos α = 1 2 , ∴ α = 60 °
∴ 角 α 的值为 60 ° .
请仿照以上解答过程,完成下列问题:
已知 a ⃗ = ( 1 , 0 ) , b ⃗ = ( 1 , − 1 ) ,求角 α 的大小.
如图,过 ⊙ O 外一点 P 作 ⊙ O 的切线 PA 切 ⊙ O 于点 A ,连接 PO 并延长,与 ⊙ O 交于 C 、 D 两点, M 是半圆 CD 的中点,连接 AM 交 CD 于点 N ,连接 AC 、 CM .
(1)求证: C M 2 = MN ⋅ MA ;
(2)若 ∠ P = 30 ° , PC = 2 ,求 CM 的长.