设函数(1)求函数的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.
选修4—5:不等式选讲若关于的不等式有解,求实数的取值范围。
(本小题满分10分)选修4-4:坐标系与参数方程.已知曲线C:为参数,0≤<2π),(Ⅰ)将曲线化为普通方程;(Ⅱ)求出该曲线在以直角坐标系原点为极点,轴非负半轴为极轴的极坐标系下的极坐标方程.
选修4—1:几何证明选讲如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:。
已知函数 (为自然对数的底数). (1)求的最小值; (2)不等式的解集为,若且求实数的取值范围; (3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
(1)求的标准方程;(2)设直线与椭圆交于不同两点且,请问是否存在这样的直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.