设函数(1)求函数的最小值;(2)设,讨论函数的单调性;(3)在第二问的基础上,若方程,()有两个不相等的实数根,求证:.
已知数列是等差数列,是等比数列,其中且为、的等差中项,为、的等差中项.(1)求数列与的通项公式;(2)记,求数列的前项和.
在中,所对的边分别为函数在处取得最大值.(1)当时,求函数的值域;(2)若且,求的面积.
已知当时,求函数的单调区间;设,当时,若对任意,存在,使,求实数取值范围.
已知P是内一点,且满足条件,设Q为CP的延长线与AB的交点,令,用表示.
已知函数,为的导函数,若为奇函数,求的值.