如果一元二次方程至少有一个负的实数根,试确定这个结论成立的充要条件.
如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
已知椭圆C:()的短轴长为2,离心率为.(1)求椭圆C的方程(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
·大纲理)已知双曲线C:(a>0,b>0)的左、右焦点分别为、,离心率为3,直线y=2与C的两个交点间的距离为.(1)求a,b;(2)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:、、成等比数列.
已知椭圆的离心率为,且经过点,圆的直径为的长轴.如图,是椭圆短轴端点,动直线过点且与圆交于两点,垂直于交椭圆于点. (1)求椭圆的方程; (2)求 面积的最大值,并求此时直线的方程.
已知点直线,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹方程;(2)、是轨迹上异于坐标原点的不同两点,轨迹在点、处的切线分别为、,且,、相交于点,求点的纵坐标.