(本小题12分)已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。(1)求椭圆方程;(2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点。证明:为定值;(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。第21题图
已知数列的前项和为. (1)求数列的通项公式; (2)求数列的前项和的取值范围.
已知等比数列中,数列满足. (1)求数列和的通项公式; (2)设,求数列的前项和.
平面直角坐标系中,直线的参数方程(为参数),圆的方程为,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系. (1)求直线和圆的极坐标方程; (2)求直线和圆的交点的极坐标(要求极角).
已知函数,. (1)若,求函数的极值; (2)设函数,求函数的单调区间; (3)若在上存在一点,使得成立,求的取值范围.
如图,已知长方形中,,为的中点,将沿折起,使得平面平面. (1)求证:; (2)若点是线段上的一动点,问点在何位置时,二面角的余弦值为.