已知椭圆C:的离心率为,以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线与椭圆C的两个交点,问:在轴上是否存在定点E,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD,AB距离分别为m,m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕,.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2). (1)求S关于x的函数关系式及该函数的定义域; (2)当x取何值时,液晶广告屏幕MNEF的面积S最小?
如右图,简单组合体ABCDPE,其底面ABCD为边长为的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=. (1)若N为线段PB的中点,求证:EN//平面ABCD; (2)求点到平面的距离.
已知数列的前n项和为,且,(=1,2,3…) (1)求数列的通项公式; (2)记,求.
已知向量,,且. (1)求的值; (2 )求的值.
已知关于的方程:. (1)当为何值时,方程C表示圆。 (2)若圆C与直线相交于M,N两点,且|MN|=,求的值。 (3)在(2)条件下,是否存在直线,使得圆上有四点到直线的距离为,若存在,求出的范围,若不存在,说明理由。