已知椭圆C:的离心率为,以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.(1)求椭圆C的标准方程;(2)已知点A,B为动直线与椭圆C的两个交点,问:在轴上是否存在定点E,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.
如图,在四棱锥中,,,, ,,和分别是和的中点.(1)求证: 底面;(2)求证:平面平面;(3)求三棱锥的体积.
一次考试中,五名学生的数学、物理成绩如下表所示: (1)要从 5 名学生中选2 人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率; (2)请在所给的直角坐标系中画出它们的散点图,并求这些数据的线性回归方程 .(附:回归直线的方程是 : , 其中)
已知函数,.(1)求的值;(2)设,,,求的值.
已知数列的前项和为 ,对于任意的恒有 (1) 求数列的通项公式 (2)若证明:
已知 函数(1)已知任意三次函数的图像为中心对称图形,若本题中的函数图像以为对称中心,求实数和的值(2)若,求函数在闭区间上的最小值