根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.
(本小题满分12分)数列满足 (1)写出; (2)由(1)写出数列的一个通项公式; (3)判断实数是否为数列中的一项?并说明理由.
(本小题满分10分)已知,请写出函数的值域、最小正周期、单调区间及奇偶性.
(本题14分)设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.
(本题14分)如下图,在三棱锥中,分别是的中点,,. (1)求证:平面; (2)求异面直线与所成角的余弦值; (3)求点到平面的距离.
(本题14分)一个圆锥的底面半径为,高为,其中有一个高为的内接圆柱: (1)求圆锥的侧面积; (2)当为何值时,圆柱侧面积最大?并求出最大值.