如图,是椭圆上的三点,其中点是椭圆的右顶点,过椭圆的中心,且满足。(1)求椭圆的离心率;(2)若轴被的外接圆所截得弦长为9,求椭圆方程。
已知四点A(x,0)、B(2x,1)、C(2,x)、D(6,2x). (1)求实数x,使两向量、共线. (2)当两向量与共线时,A、B、C、D四点是否在同一条直线上?
a≠0,b≠0,a与b不平行.求证:a+b与a-b不平行.
已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.
如图所示,在▱ABCD中,已知=,=. 求证:B、F、E三点共线.
已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.