已知抛物线的顶点在原点,焦点在轴正半轴上,抛物线上一点的横坐标为2,且该点到焦点的距离为2.(1)求抛物线的标准方程;(2)与圆相切的直线交抛物线于不同的两点,若抛物线上一点满足,求的取值范围。
已知函数.(1)若,讨论函数在区间上的单调性;(2)若且对任意的,都有恒成立,求实数的取值范围.
已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
如图,已知中,,点是边上的动点,动点满足(点按逆时针方向排列).(1)若,求的长;(2)求△面积的最大值.
如图,已知正方形的边长为,点分别在边上,,现将△沿线段折起到△位置,使得.(1)求五棱锥的体积;(2)求平面与平面的夹角.
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
现将根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.(1)计算新工人乙生产三件产品A,给工厂带来盈利大于或等于100元的概率;(2)记甲乙分别生产一件产品A给工厂带来的盈利和记为X,求随机变量X的概率分布和数学期望.