已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
如图:中,E是AD中点,BE∩AC=F,,求的值.
已知椭圆:的一个焦点为且过点.(Ⅰ)求椭圆E的方程;(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.
已知函数.(Ⅰ)当时,求证:函数在上单调递增;(Ⅱ)若函数有三个零点,求的值.
已知数列是等差数列,且满足:,;数列满足 .(1)求和;(2)记数列,若的前项和为,求证.
如图,底面△为正三角形的直三棱柱中,,,是的中点,点在平面内,. (Ⅰ)求证:; (Ⅱ)求证:∥平面;(Ⅲ)求二面角的大小.