已知椭圆的左焦点为,左、右顶点分别为,过点且倾斜角为的直线交椭圆于两点,椭圆的离心率为,.(1)求椭圆的方程;(2)若是椭圆上不同两点,轴,圆过点,且椭圆上任意一点都不在圆内,则称圆为该椭圆的内切圆.问椭圆是否存在过点的内切圆?若存在,求出点的坐标;若不存在,说明理由.
等差数列的前项和为,. (1)求数列的通项公式;(2)令,求.
已知锐角△ABC中,分别为角A、B、C所对的边,且. (1) 求角C的大小;(2)若,且,求的值.
已知函数f(x)=(x-a)(x-b)2,a,b是常数. (1)若a≠b,求证:函数f(x)存在极大值和极小值; (2)设(1)中f(x)取得极大值、极小值时自变量的值分别为x1,x2,设点A(x1,f(x1)),B(x2,f(x2)).如果直线AB的斜率为-,求函数f(x)和f′(x)的公共递减区间的长度; (3)若f(x)≥mxf′(x)对于一切x∈R恒成立,求实数m,a,b满足的条件.
设函数f(x)=ln x--ln a(x>0,a>0且为常数). (1)当k=1时,判断函数f(x)的单调性,并加以证明; (2)当k=0时,求证:f(x)>0对一切x>0恒成立; (3)若k<0,且k为常数,求证:f(x)的极小值是一个与a无关的常数.
已知函数f(x)=ax-ln x,g(x)=,它们的定义域都是(0,e],其中e是自然对数的底e≈2.7,a∈R. (1)当a=1时,求函数f(x)的最小值; (2)当a=1时,求证:f(m)>g(n)+对一切m,n∈(0,e]恒成立; (3)是否存在实数a,使得f(x)的最小值是3?如果存在,求出a的值;如果不存在,说明理由.