已知为抛物线上一动点,为其对称轴上一点,直线与抛物线的另一个交点为.当为抛物线的焦点且直线与其对称轴垂直时,△的面积为.(1)求抛物线的标准方程;(2)记,若的值与点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
当时,,(I)求;(II)猜想与的关系,并用数学归纳法证明.
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:(≤120).已知甲、乙两地相距100千米。(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
如图,四棱锥中,底面为平行四边形,,,⊥底面.(1)证明:平面平面; (2)若二面角为,求与平面所成角的正弦值。
已知,证明:.
已知函数的导数满足,,其中常数,求曲线在点处的切线方程.