用直尺和圆规在如图所示的数轴上作出的点.
如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,AD=AE. (1)如图2,点P在线段BE上,作EF⊥DP于点F,连结AF. 求证:;(2)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.
如图,在中,,.若动点从点出发,沿线段运动到点为止,运动速度为每秒2个单位长度.过点作交于点,设动点运动的时间为秒,的长为.(1)求出关于的函数关系式,并写出自变量的取值范围;(2)当为何值时,的面积有最大值,最大值为多少?
在边长为1的正方形网格中,正方形与正方形的位置如图所示.(1)请你按下列要求画图:① 联结交于点;② 在上取一点,联结,,使△与△相似;(2)若是线段上一点,连结并延长交四边形的一边于点,且满足,则的值为______ _______.
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不超过45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)若该商场获利为元,试写出利润与销售单价之间的关系式,售价定为多少元时,商场可以获利最大,最大利润为多少元?(2)若该商场获利不低于500元,试确定销售单价的范围.
已知:抛物线C1:经过点A(-1,0)、B (3,0)、C(0,-3). (1)求抛物线C1的解析式; (2)将抛物线C1向左平移几个单位长度,可使所得的抛物线C2经过坐标原点,并求出C2的解析式;
(3)把抛物线C1绕点A(-1,0)旋转180°,求出所得抛物线C3的解析式.