已知数列满足,其中是数列的前项和. (1)若数列是首项为,公比为的等比数列,求数列的通项公式; (2)若,,求数列的通项公式; (3)在(2)的条件下,设,求证:数列中的任意一项总可以表示成该数列其他两项之积.
是否存在实数使得关于n的等式 成立?若存在,求出的值并证明等式,若不存在,请说明理由.
有4男3女共7位同学从前到后排成一列. (1)有多少种不同方法? (2)甲不站在排头,有多少种不同方法? (3)三名女生互不相邻,有多少种不同方法? (4)3名女生在队伍中按从前到后从高到矮顺序排列,有多少种不同方法? (5)3名女生必须站在一起,有多少种不同方法?
已知为复数,为实数,求.
已知一个圆与正方形的周长都为1,证明:圆的面积比正方形的面积大.
(1)求 (2)已知,求n.