(本小题满分12分)设椭圆C 的离心率为,其焦距. (1)求椭圆C的方程; (2)若P在椭圆上,F1,F2分别为椭圆的左右焦点,且满足,求实数t的范围; (3)过点Q(1,0)作直线l (不与x轴垂直)与该椭圆交于M,N两点,与y轴交于点R,若,试判断是否为定值,并说明理由.
(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.为的中点,.(1)求证:;(2)求二面角的正切值.
在等差数列中,已知,. (1)求;(2)若,设数列的前项和为,试比较与的大小.
在中,内角,,的对边分别为,,,且.(1)求角的大小;(2)若,,求的面积.
设,函数.(1)当时,求在内的极大值;(2)设函数,当有两个极值点时,总有,求实数的值.(其中是的导函数.)
抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点.(1)求抛物线的焦点与椭圆的左焦点的距离;(2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.