抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点.(1)求抛物线的焦点与椭圆的左焦点的距离;(2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.
已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。(1)求双曲线C2的方程;(2)若直线l:与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
已知双曲线的两个焦点为、点在双曲线C上.(1)求双曲线C的方程;(2)记O为坐标原点,过点Q (0,2)的直线l与双曲线C相交于不同的两点E、F,若△OEF的面积为求直线l的方程.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出关于的线性回归方程;(3)已知该厂技术改造前吨甲产品能耗为吨标准煤;试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
已知中心在原点,一焦点为的椭圆被直线截得的弦的中点横坐标为,求此椭圆的方程。
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)(1)求;(2)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。