在中,内角,,的对边分别为,,,且.(1)求角的大小;(2)若,,求的面积.
已知函数。 (1)求函数的单调递减区间; (2)求函数在区间上的最大值及最小值; (3)将函数的图象作怎样的变换可得到的图象?
已知平面直角坐标系内三点、、在一条直线上,,,,且,其中为坐标原点. (1)求实数,的值; (2)设的重心为,若存在实数,使,试求的大小.
对于函数(). (1)探索并证明函数的单调性; (2)是否存在实数使函数为奇函数?若有,求出实数的值,并证明你的结论;若没有,说明理由.
设全集,集合为第二象限角,集合为第四象限角. (1)分别用区间表示集合与集合;(2)分别求和.
已知椭圆的焦距为2,且过点. (1)求椭圆C的方程; (2)设椭圆C的左右焦点分别为,,过点的直线与椭圆C交于两点. ①当直线的倾斜角为时,求的长; ②求的内切圆的面积的最大值,并求出当的内切圆的面积取最大值时直线的方程.